29,376. Selocstodes auriculetus (Girard) J. \& G. Sin Martiu Island.
29,361. Sebestontes serriceps J. \& G. San Martin Island.
29,351. Heterostichus rostrutus Grd. San Martin Island.
29,360. Wherena morlax Ayres.
Indiana Universtity, Nocember 1.5, 1 s81.

RIV W\%. II. DAEL.

PALEOZOIC FORMS.

The long delay in preparing the illustrations for the monograph of the Chitonitue by the late Dr. Philip P. Carpenter has been the occasion of several calls from paleontologists for an abstract of the genera adopted in his revision of the fossil species. In justice to Dr. Carpenter it seems that the characteristies of the genera should be made public, the material left by him on the Paleozoic species being practically complete and ready for printing. The Mesozoic and Tertiary chitons all belong to grouns represented by living species, hence the present abstract relates solely to those of earlier date. The groups of recent chitons, already reviewed by me in these Proceedings,* form the subject ${ }^{\circ}$ of the second more condensed ahstract herewith.

The first fossil chiton was fom by Defrauce in 1803, in the Eocene, aud deseribed by Lamarek as Chiton yrignonensis. It was ouly in $183 \pm$ that a second species, C. untiques Comrad, was obtained, on this occasion from the Alabama Tertiary.

The first paloozoic chitons were fond in the Carboniferons rocks of Tournay, in 1836, but they wele not described until 1839. Since then momerons others have been bronght together and described by various authors, as well as a number of organic remains not belonging to the Chitonide which lave wrongly been referred to the group. Dr. Carpenter expended a large amonnt of time and money in examining the typical specimens in Ameriean and European maseums, making several jonmeys for the purpose. His opinions, therefore, are entitled to great weight. Some time before his death, at his request, we went over the gromud together, specimens and figures in hand, and the opinion then formed that his work is morthy of great respect, and, so far as facts are concerned, of entire conficlence, has not been changed by my subsequent stuly of his incomplete mansicripts.

An excellent digest of the history of fussil chitons to date of publication was given ly De Koninck in 1856, t which was translated for the Annals and Magazine of Natural History, of Angust, 1860, by W. H. Baily.

[^0]The characters for the groups herein described are due to Dr. Carpenter, and are given mostly in his own words. It will be observed that the groups named by others are restricted by him, by elimination of incongruous material included with the original types.

Helminthochiton Salter.

Helminthochiton Salter (pars) © 1, Proc. Geol. Soc., 1846, pp. 49, 51, 52, fig. 6 ($\$$ figs. 2, 3, exclus.).
Lorica leptoidea, elongata, regularis; mucro ischnoideus; valve terminales hand sinuatæ; apophyses? (ignotæ).

Hclminthochiton may be described as a greatly lengthened chitonons animal with the valves thin and angular, and perhaps without apophyses, though the negative evidence is not sufficient to estabiish so remarkable a departure from the type of the class in general. It differs from Gryphochiton in having the terminal valves regular, not simate, and in having a regular subcentral Ischnoid mucro instead of the Grypheca-like beak characteristic of the second section. It may be regarded as a Leptoid Ischnoplax with the valves thrown forward.

Species.

Helminthochiton Griffithi Salter, 1. c., pp. 51, 52, fig. 6. Silurian of Ireland. (Type.) Helminthochiton priscoides, Carpenter. Devonian of Vilmar; Schultze. (Mus. Comp. Zoölogy.)

Gryphochiton (Gray) Carpenter.
Gryphochiton Gray (pars.), P. Z. S., 1847, p. 70; no diaguosis.
Lorica regularis elongata; lamine laterales nullæ, suturales parvæ, a sinu simplici lato separatx; mncro postice medianns, incurvatus; regio capitis et cande valde sinuata. Type G.priscus Munster.

Gryphochiton resembles a Leptochiton greatly drawn out and with the terminal valves more sinuated than has been observed in any recent Chiton.

Species.

Gryphochiton priscus Müuster, Beitr. zur petr. knude, 1, p. 38, fig. 4, 1839. Carboniferous of Tournas.
Gryphochiton mempiscus Ryckholt, Bull. Acad. Roy. des Sci. de Bruxelles, 1845, p. 48, no. 4, pl. 2, figs. 5, 6, 7, 8. Carboniferous of Tournay.
Gryphochiton triangulatum Carpenter, Ryckholt, 1. c., pl. 2, figs. 4, 9, 10. Same locality. Gryphochiton nervicanus, Ryckholt, 1. c., p. 47, No. 3, pl. 1, figs. 7, 8, 9, 1045. Same locality.

Subgenus Chonechiton Carpenter.

Lorica leptoidea, valve centrales Gryphochitoni similes, projectæ; valva postica mucrone postico, infundibuliformi.

This bears the same relation to Choneplax which Loricites does to Lorica, i. e. similarity, except in the absence of lamina of insertion. It may be described as a Leptoid Choneplax. In the recent shell the
funnel is formed by the laminæ of insertion; as these do not exist in the leptoid section, the fumel is seen in the hollowing of the back of the valve itself.

Type.

Chonechiton (Chiton) riseticola Ryckholt, 1. c., p. 51, no. 6, pl. 3, figs. 10, 11, 1845. Carboniferous of Visé, Belgium.

Priscochiton Billings.

Leptochitou: lamina postica apicali, intus excarata.

Type.

Priscochiton canadensis Billings, Pal. Fos. Canarla, 1865, p. 394, fig. 370. Loter Silurian.

Pterochiton Carpenter.

Lorica eJongata, leptoidea; valvie lateraliter excavate, projecta postice acuminatæ; valva postica regularis, mucrone ischnoideo; valva antica (plerumque?) sinuata; apophyses maxime, sinu lato. Type C.eburonicus Ryckholt.

Species.

Pterochiton cburomicus Ryekholt, Bull. l. ᄃ., part ii, p. 53, no. 8; pl. 4, figs. 7, 8,* 1845. Carloniferous limestone of Vise, Belgimm.

Pterochiton legiacus Ryckholt, Bull. 1. c., p. 52, no. 7, pl. 4, figs. 5, 6, 1845; Chitou gemmatus (pars) Koninck, An. Fos. Carb. Belg., p. : 323 , no. 3, pl. д3, figs. c, d, e (not figs. a, b). Same locality as the precenting.
Pterochitou gemmatus (Koninek) Ryckholt, 1. c., 1845, p. 59, no. 13, pl. 4, figs. 1, 2, 3 (fig. 4, forsitan exclus.). Same locality as preceding.
Pterochitou Thomondiensis Baily, Nat. Hist. Review and Quart. Journ. Sci., July, 1859, pl. 4, f. $2 a-c$. Carboniferons limestone, County Limeriek, Ireland.
Pterochiton Saudbergianus (?) Ryckholt, 1. c., 1. 62,1845. Devonian, Vilmar; Schultze. (Mus. Comp. Zoäl.)
?? Pterochiton Sluseanus Ryckholt, 1. c., p. 5, No. 10. (Non C. Sluseanus ejnsilem, pl. 4, figs. 7, $8=$ ebwromieus. \dagger Cf. text.)

Sulgeuns Loricites Carpenter.
Related to Helminthochiton and to the recent Lorica as above stated. From the latter it differs in the absence of lamine of insertion. Type Chiton concentricus Koninck, op. cit., 1857.

Probolevi Carpeuter.

Lorica leptoidea, elongata, maxime projecta; valvis centralibus area centrales ante areas jugales porrecta; valva antica sinnata, valva post-ica-? Type C. cormgatum Sandberger (pars).

Among recent forms this comes nearest to Katherina, but the difference is still extremely great.

[^1]
Type.

Chiton corrugatus Sandluerger fr., Verst. Rhein. Schicht. Nassau, p. 238, pl. 26, fig. $22 a, 1836$, not figs. $22,2: b, 22 c, 22 d=$ fish seales and valves of barnacles, as per typical specintens in Mus. Comp. Zö̈logy, etc. Devonian of Vilmar.

Cymatochiton Dall.

Valvis centralibus transversis, antice projectis, satis elevatis, jugo aeutiore, lateribus planatis; apophysibus modicis, satis extantibus, valde distantibus; sinu jugali latissimo, incurrente; umbonibus extantibus, margine antico ad jugum valde postice sinuato. Type C. Loftusiamus King.

This represents a Leptochiton with the valves thrown forward. It differs from Probolcum in the valves being transverse instead of squared, and in the terminal valves being regular instead of waved. The name Cymatodus used in manuscript for this group by Dr . Carpenter is preoccupied by Newberry (1870).

Species.

Cymatochiton Loftusiamus King, Innals \& Mag. Nat. History, I, vol. 14, p. 382; Kirkby, Proc. Geol. Soc., 1859, p. 607, 611, 615, p1. 16, figs. 31-41. Permian, Tunstall Hill, England.
Cymatochiton liyckholtianus Koninck Mss. Types Mus. Comp. Zoül. Carboniferous of Visé, Belgiam.
? Cymatochiton tornaticola* Ryckholt, 1. c., p. 45, 11. 1, figs. 1, 2, 3, 1845. C'arboniferous of Tournay.
? Cymatochiton Scaldeamus * Ryckholt, 1. c., p. 46, pl. 1, figs. 4, 5, 6, 1845. Same locality. ? Cymatochiton Howscomus Kirkly, Quart. Journ. Geol. Soc. 1ی57, p. 216, pl. 7, figs. 9-13. Permian, Tunstall Hill, Englant.

This last species is the first undoubted C'hiton to put on features common to all the recent forms of the family.

Until the full record of his investigations is published, the amount of confusion as to types, discreputies between figures and specimens, and errors of one kind and another discovered by Dr. Carpenter in his examination of the original types of many of the species can hardly be imagined. The synonymy is also necessarily left until the complete paper shall be printed. Meanwhile the student is warned that the citations herein actually made are the only ones which are guaranteed to relate to the species named, though there may be, and in most cases are, others which might be cited. The preceding (with synonyms) number all the Palæozoic chitons actually determined to be such up to 1873.

In the course of the investigation the following species have been found not to be chitons or chitonoid. They belong rariously to fish scales, barnacle (Turilepas) valves, ostracod crustacea, and some to undetermined organisms.

[^2]"Chitou" Grayaus Koninck, 185\%. Upper Silurian.
" Chiton" Wrightianus Koninck, ditto.
"Chitonellus" Huncockicuns Kirkby, Proc. Ceol. Soc., 1s.09, pl. 16, figs. 1-13. Permian, England.
"Chiton" cordatus Kirkhy, ditto, figs. 94-99.
"Chitoncllus" distortus Kirkhy, ditto, tigs. פマ-."0.
"Chitonellus" antiquus Howse, Kirkloy l, c., figs. 14-23. Permian.
"Chiton" cordifer Koninck, Descr. An. Foss. Terr. Carb. Belg., 1844, 1, 324, pl. 22, fig. $5 a, b$ (teste Ryckholt). Camboniferons of Belgimm.
 Devonian and Lower Devonian of Vilmar and Ehrenbreitstrin.
"Chiton" sagittulis Sandberger, l. c., p. 239, pl. 20, figs. 23 a, b, Same locality?
Sulcochiton Grayi Ryckholt, Journal te Conclijl., 1世6\%,]. :3:9, nl. xii, f. 14. Carboniferous of Visé, Belginm.

ABSTRACT OF ALL THE GENERA.

Order POLIPLACIPIIORA.

Section I.-Chitones regulares.
Head and tail plates similarly articmated.
A. Leptoidel.

Insertion plates obsolete or, if present, muslit.
(Extinct forms.)

1. Helminthochitom Sialter.
2. Gryphochiton Grav. a. Chonechitou C ${ }^{+} \mathrm{pr}$.
3. Priscockitou Billings.
4. Preverthiton Cirr.
a.? Lormites Cur.
5. Probolorm (${ }^{*} \mathrm{~m}$.
G. C'ymutochiton Dall.
(Recent forms.)
6. Leptorhiton Gray.
a. Deshayesiclla C'pr.
7. Hanteyia Gras.
8. Heminrthum C1rs.
9. Mirmoplax Jdams and Angas.

B. IsciINOIDEA.

Insertion plates sharp, smonth, fissured; with eaves.
*No pores on girdle.
11. Trachydermon Cpr.
a. Trachyradsia Cl^{1}.
12. Callochiton Gray.
a. Stereochiton Cpr.
13. Tonicella Cpr.
14. Schizoplax Dall.
15. Leptoplax Cpr.
16. Chatoplewre Shintifeworth.
(1. Maugerella Cpr.
17. Spongiochiton Cpr.
18. Ischuochiton Gray.
*. Ntemoplax Cm.
7. Stemorudsia Cpr.
©. Ischmoplax C1r.
d. Hetcrozona C1pr.
e. Ischnochiton s. s. ('pr.
f. Ischmoratsia Sluttleworth.
9. Lepidopleurus Cןr.
7. Lepidoradsia C'pr.
19. Callistochiton Cpr.
20. Callistoplax Cpr.
21. Angasia Cpr.
22. Newcombia Cpr.
23. Ceratozona Dall.
24. I'allorhiton Dall.

C. Lophyroidea.

Insertion plates broad, pectinated, projecting backward.
25. Chiton Linne.
a. Radsia Gray.
26. Tonicia Gray.
a. Fannettia Dall.
27. Eudoxochiton Shuttleworth.

2s. Craspedochiton Shuttleworth.
D. ACANTHOIDEA.

Insertion plates thrown forward.

* Plates broad, pectinated (A. lophyroidca).

29. Sclerachiton Cpr .
** Plates sharp, grooved ontside (A. typica).
30. Acanthoplewr Guilding.
a. Lucilina Dall.
b. Corephium Gray.
c. Francisia Cpr.
*** Plates sharp, smooth (A. ischoidea.)
31. Dinoplax Cpr.
32. Middendorfia Cpr.
a. Beanella Dall.
33. Nuttallina Cpr.
34. Arthuria Cpr.
35. Phacellopleu'a Guilding.

Section II.-Chitones irregulares. Tail plate abnormal or with a sinus behind.
E. Sciilzoidea.

Tail valve fissured.
36. Lorica H. and A. Alams. a. Aulacochiton (Shuttleworth) Cpr.

F. Placiphoroidea.

Tail valve unslit, internally ridged, mucro nearly terminal.
38. Enoplochiton Gray.
39. Orwithochiton Gray.
40. I'laciphora Gray.
a. Fremblya H. Adams.
b. Euplaciphora Shuttleworth.
c. Cruildingia $\mathrm{C} p \mathrm{r}$.

G. Mopaloidea.

Tail ralve with posterior sinus and one slit on each side.
41. Mopalia Gras.
a. Placiphorella Cpr.
42. Katherina Gray.
43. Acunthochiton (Leach) Herrm.
a. Macandrellus Cpr.
b. Stectoplax Cpr.
44. Notoplax II, Adams.

H. Cryptoidea.

With double sutural laminse.
45. Cryptoconchus Blainville.
46. Amicula Gray.
a. Amicula s. s. Dall.
b. Chlamydochiton Dall.
47. Cryptochiton Gray and Middendorf. ,

I. Uhitonelloidea.

Tail plate funnel-shaped. Laminæ thrown forward.
48. Chitonellus Blainville. a. Cryptoplax Gray.
49. Choneplax Cpr. a. Chitoniscus Cpr.

It is hardly necessary to observe that the names here ascribed to Gray, Shuttleworth, and other older writers are more or less restricted so as to make them natural assemblages, which most of them originally were not. The subdivisions under similar names to be found in Adams' Genera of Recent Mollusca and Chénu's Manual are nearly all heterogeneous assemblages. Some names which were found to have been preocenpied in other groups have been replaced by new ones. Nearly all the names enumerated have been made pulbie, some of them many years ago, others by Dr. Carpenter in his "Table of Regular Chitons," distributed in November, $\mathbf{1 8 7 3}$, but of which a large proportion of the copies printed are still on hand. Some appeared in different papers on mollusca of the northwest coast of North America, published by Dr. Carpenter from 1863 to 1874 , and several were elueidated in a paper on the New England chitons in the Bulletin of the Essex Institute in 1873. A majority of them were also characterized by me (partly from Dr. Carpenter's manuscript) in my Report on the Limpets and Chitons of Alaska, \&c., Proc. U. S. National Musemm, December, 1878. Such as still remained mpublished are now included in the following analytical tables with additional notes elucidating their characters more fully.

It is believed that the publication of these tables will be benefieial in several ways, as iu giving a general view of Dr. Carpenter's classification, and especially in calling attention to the characters which it is desirable should be distinctly noted by those who may describe new species of Chitonide, and for the want of which it is impracticable, in the majority of cases, to properly classify or even to subsequently recognize the species. The technical terms used and the relations of the several parts have been explained in my report above mentioned, and it is not considered necessary here to repeat the explanations.

The publication of the entire monograph only awaits the preparation of the illustrations, which has been delayed by circumstances entirely beyond the writer's control.

It mas be thonght by some who have not inrestigated the subject that the group has been undnly dicided. In regard to the permanent
relations of its various genera, no dogmatism is justifiable at present or until the characters of a much larger number of speeies have been definitely determined. Until then, when the questions can be decided, the various subdivisions will at least serve a very useful purpose in calling attention to differences which otherwise might pass umotieed or unheeded. For my own part, my impressions are that the majority of the genera or subgenera proposed by Dr. Carpenter will eventually be recognized as well founded, though a certain number may be condemned to consolidation.

NOTES ON TIIE GENERA.

6. Cymatodus Carpenter, MS., not of Newberry, 1570.

7 a. Differs from Leptochiton not only in its hairy girdle, but also in its valves, which are thrown formard, forming a decided transition toward some of the palæozoic forms. Type Leptochiton curvatus Cpr. Okosiri, Japan; A. Adams.
10. Mieroplax Adiuns and Angas 1864, not of Lilljeborg, 1865.
12. Cailochiton (restricted). Laminæ broken up into very numerous teeth risiug out of spongy eaves, and having a tendency to beeome propped outside; sinus a mere wave in the united bodies of the sutural laminr; mantle reticulated with peeuliar bodies, the tips of which appear like diamond-shaped seales, and which are molike the girdlearmature of any other Chiton. Example Chiton leris of Montague, Pennant and Gray.

12a. Subgenus Stercochiton; Callochiton: zona coriacea sjarsim lanuginosa. Type Chiton eastaneus Woord, Ind. Test. et Gen. Condh.
15. Valvæ tenues in zona tenui, levi, partim immersa; lamiuæ insertionis acutæ, terminales panci-fissatæ, sed regulares; simus haud dentatus; mucro medianus. Example, Chiton coürctatus Sowerby, Isle of Bohol.
17. Valvæ partim immersæ; laminæ acutæ, Ischnoidæ; sinus maguus levis; muero medins planatus; zona spongiosa, antice producta. Example, Spongiochiton productus Clır., New Zealand, Mus. Cuming, no. 50. This may be considered a partially envered Chetoplewra, just as Leptoplax is a partially corered Tonicella.
20. Testa extus et intus ut in Callistochitone, zona porifera aliter nuda. Type Chiton retusus Sby. China Seas.
21. Testa extus et intus Chætopleuroidea sed subgrundis parris; zona minute squamulopilosa, fasciculis ad suturas instructa. ($=$ Hanleyia Ad. \& Angas, ion Gray). Type A. tetrica Cpr. Ceylon. Mus. Cuming, no. 83.

Hanleia variabilis Ad. and Angas probably belongs to this group, but has not been dissected.
23. Ceratophorus Carpenter MIS. (non Diesing, 18j0). Talvæ extus et intus Chretopleure similis, sed dentibus suffultis, sulgrimedis curtis; zoua levis, in comua sen cornum faseiculas circa suturas et marginem porrecta. Type Chiton Guildingi Reeve.

This cliffers from all other hairy or spiny Chitons, at all neary related to it, in the mantle ornaments not being inserted into sockets, but being extensions of its substance.
24. (Hemphillia ('pr. MS., non Binney.) Nutalliua: zona lanngosa; lamine centrales unifissata. This section unites in a form resembling Nuttallinu some of the features of Middendorfir, from which the girdle differs in being spongy and covered with soft hairs instead of short shelly bristles. The shape is that of an Ischmochiton, the scolpture and gimlle of Chetopleura, the insertion plates and sinus almost exactly like Middendorfia. Type Pallochiton lanuginosus ('pr. sp. Lower California. 26a. Famia Gras, not lobineau Desvoidy, 183n.
29. Lorica Acanthoplamre, zona Enoppochitoni similis; laminatobtusa, pectinate, sinus umdatus, levis. Type Sclcrochiton ('pr. Torres Straits. Mus. Cuming, no. 4\%.

Most like Enoplochitom, from which it difters in the articulation of the tail plate and the suls-central muero.

30a. Lucia Gonld, not of Swainson, 1833.
$30 c$. Acantloplenra : Valvis partim immersis, planatis; laninis centralibus plemifissatis; simu lobato. Type Chiton simosa Brugiere.

This form bears the same relation to Acenthoplenra that Famettia does to Tonicir, with the alditional peenliarity of Radsioid nicks in the central ralves. Named for Dr. Francis, once editor of the Annals and Magazine of Natural IIstory.
31. Lorica soliclissima alata: mucro hand elevatus submedianus; laminæ valva separate, acutre, leves; V. post. antice tententes; sinus minimus; zona coriacea, fasciculatim spinulosa. Type Chiton gigns; (hemnitz.
32. (Dausonia Opr. (preöc.) 1873; Middendorfia Cpr. in MS. later.) Lorica et zona extus ut in Acanthopleuru; laminæ acutæ, extus rugosa, suffinlta; sims planatus hand laminatus. Type Chiton Polii Philippi (non Deshayes), Dalmatia. Internally Ischoid, externally Acanthoplenroid.

32a. (Beania Carpenter, not Johnstone.) Lorica et zoua inter dean thopleuram et Ischnochitonem intermedia; mucro submeflianus; lam inze acuti, hasd suffulti; zona squamis subspinosis striatis rix imbricata. Type Chiton Rissoi Cuming, non Payr. C. pseulorissoi Opu. MS., Malta. Mus. Cuming, no. 51.
34. Lorica temis; valve undatar; mucro posticus, proluctus, laminz acutr, leves; V. post. antice projectie, simus planatus, laminatus, levis; zona coriacea, levis, sen lamgata. Type Arthuria filosi Cpur, loe incert, Mus. Cuming, nos. 23, 35.

This has the aspect of Chotoppente externally in smiphure, but has the tail plate like $\mathrm{T}^{7} u t t u l l i n \neq$ its structure, and like Placiphora iu its external appearance.
 parm sinuato; sim lobato; zona squamnlis minimis obsita, antice producta. Example, Lorica Angasi H. Adams, P. Z. S., 1864, p. 193. Australia.

40 a. =Streptochiton Cpr. MS. Type F. Collei H. Adams. Australia. 40b. Placiphora: sinu lato, planato; zonre setis laud fasciculatim instructis. Type Chiton petholatus Sowerby. South Australia.
$40 c$. Placiphora: valvis partim immersis; zona postice emarginata. Type G. obtecta Cpr. New Zealand. Mus. Cuming, no. 45.

43a. A canthochiton: valvis partim tectis; mucrone Ischnoideo; lam. postica rugosim lobata; ar. lat. depressis. Trpe M. plumeus Cpr. Hab.? Mus. Cuming, no. 108.

43b. Acanthochiton: valvis per duas trientes immersis. Type S. porrecta Cpr. Japan. Mus. Cuming, 110.97.
49. Animal repens, satis elongatum: valræ expositæ parvæ, omnino coutigux; valria postica infundibuliformis; mucro retrojectus, terminalis; laminæ nt in Katherina sed obsoletim fissatæ; zona Acanthochitonoidea. Type Chiton strigatus Sowerby. West Indies.

49a. Animal et testa Choneplacis similes sed zona haud porifera.
Based on Chitonellus striatus and strigatus Sowerby, Conch. Ill., figs. 62 and 63 , which are represented as without pores. In the former the valves are separated (as in Notoplax); in the latter they touch (as in Choneplax). The species need examination to confirm the accuracy of the figures, but it is probable that there are both pore-bearing and nonporiferons species among the vermiform as well as the compact Chitonelles. These last gromps are the highest and most active in the whole order in tropical waters, as is Cryptochiton in the north.

Table I.

The following table will exhibit the minor characteristics of most of the recent Chitons in regard to the plan of the insertion plates, number of slits, if any, in anterior, middle and posterior valves; character of the tooth-like projections between the slits; and of the margin of the outer layer overhanging the insertion plates, termed caves by Dr. Carpenter; all according to the numbers and letters of the preceding list:

	Plan of insertion plates.	Slits in valves.			Teeth.	Eaves.	Gills.
$\begin{aligned} & 1 \\ & \vdots \\ & \vdots \\ & 8 \end{aligned}$			炭	笁			
	None (Leptoidea.)						
$7 \times$	-	0	0	0	None	None	Post.
8	Only in anterior ralve	0	0	0	Rugose lamina.	Minute	
9	l'resent in anterior and posterior valves.	0	0	0	smooth lavina	. . do	Sbort.
10	Present in all ralres.......	0	0	0	. . . ilo	None	Short.
	(Ischnoidea.)						
11	Fegular, branching.	\times	\times	1	Sharp, normal	Projecting, spon-	Med.
		\times	\times	2		gy, ${ }_{\text {do }}$.	
12	Minutely divided	$\stackrel{+}{\times}$	\times	2	Propped outsid	Broad, spongy...	(?)
$12 a$...do..................	\times	$\stackrel{\times}{\times}$	5		...do	(?)
13	Regular, branching	${ }^{\times}$	$\stackrel{\times}{11}$	1	Suarp, normal	Short ${ }^{\text {a }}$	Med.
15	Tegular, projecting	6	4	1	Sharp, loug thin	Minu	(?)
16	Regular, brancling	\times	\times	1	Sharp, normal.	Moderate....	Amb.

$x=$ manr $; \div=$ few $;+=$ or more $; *=$ irregular.

	Plan of insertion plates.	Slits in valve.			Teeth.	Eaves.	Gills.
		$\underset{=}{\stackrel{\Delta}{4}}$	$\begin{gathered} \text { E. } \\ y_{3}^{3} \end{gathered}$				
$16 a$		\times		$2+$	Sharp, normal	Projer	(?)
17		6	5	1	Sharp, lous, smosth.	Minute.	(?)
18a		\times	\times	1	Sbarp norma:	1rojerting.	Amb.
$18 b$		\times	\times	$2+$			Amb.
1 18.		1	10	1	...do	- do	Amb.
181		11	11	1	- . do	- do	Amb.
18 e		\times	\times	1	... do	p do..........	Amib.
$18 f$		\times	\times	$2+$... do	Projecting, long.	Amb.
$14 y$		\times	\times	1	- . . do	. . . do	Amb.
18\%		\times	\times	$2+$			Amb.
19		\times	\times	1	Excurved plumate..		Amb.
20		\times	5	1	Excurved, solid	1rrojecting......	(?)
21		\times	5	1	Rough, propperl. .	Short . .	(?)
23		\times	\times	1	Solid, not propped.		(3)
$\stackrel{23}{24}$		10	-9	,	Solid, propped....	-. de	$\stackrel{(?)}{3}$
	(Lophyroiderc.)	$8-10$	--9	1	Sharp, curved	Shat, sponsy .	
25$25 a$2626262728	Regular, branchus	$\begin{array}{r}\times \\ \times \\ \times \\ \times \\ 9 \\ \hline \\ \hline \\ \hline\end{array}$	$\begin{gathered} \times \\ \times \\ \times \\ \times \\ 9 \\ k \\ \bar{j} \end{gathered}$	1211141	Blunt, serrate do Sharper, serrate Sbarper, servate, long Blant, fimbriate (?)	Short, spongy	Amb.
do					y. do	Amb.
	Г....do.do.					Very short.....	Amb.
	Tnfissured					Short	
	liegular.						(?)
29	(Acanthoidea.) Rewnlar, hamehing			1	Dlunt, groured	Projuctimg,	(?)
30	10	\times	\times	1	Longer, guover	- do	
30a	,	\times	\times	$2+$	- . do	. 110	(?)
30%		0	1	1	do	- . do	Amb.
$30 c$		10	1.5	$2+$	do	Yery short.	
31		10	10	1	Long, smoth	Monferaten not	(?)
32			9	1	Propped, smooth.	Mowlerate, spongy	(!)
$3 \Sigma a$		9	9	1	Short, sharp, smooth.	Projerting......	
33	V all thrown	7-8	10	2	Very long, sharp, smooth		Amb.
34	V. post. thrown forwart	$9+$	10	1	$\begin{aligned} & \text { Normal, sharp, } \\ & \text { smooth. } \end{aligned}$	Mouterate	(?)
35	(Shizuidea.)	$6+$	5	1	Very long, sharp. sincoth.	Vrry slort	Amb.
30						Morl rate..	
36π	\} slit letween 2 riviges. \{	0	\times	1	sharp, serrate	Loug..	
37	Str. forwarl, leep slit...... (Placiphoroidect.)	\div	\times	1-2	Sharp, long...	Small	Med.
38	Str: forward, flat behind	0	\times	1	None behind	Dieply furrowed	(?)
39	Regular, tlat behind.	0	\times	1	Normal, serrate	Mondrate.......	
40	Regular, ribbed behind	0	\times	1	Slightly propped	Small	Amb.
403		0	\times \times \times \times	1	Sharp	Minute.............	
40 c		0	\times	1	sharp, very long, sinooth.		(?)
	(Mopeloidea.)						
41	\} Regular, posterior valve $\{$,	$8+$	1	Lons, propped	Minute.	Med.
$41 a$	S laminatel.	1	\times	,	Mod., simple	Small	
42	Thrown forward, laminated	*	7	1	Verc long, propped..	Minnte, spongy:	${ }_{\text {Amb }}$
$4 . a$	Thrown forward somew hat	*	5	1	Vers long, sharp.	Minute	
$43 b$	Thrown forwaremucl				smooth.		
		1	5	1	do	(?)
44	Tail plate crenate behind... (Cryptoidea.)	2	5	1	gose. Crenate, sharp, smooth.		Long.
45	Regular, behind rariable	$*$2222	5655	\|l $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1\end{aligned}$	Very long, smooth do do do		
$46 a$	Mopaloid						Med. Amb. Amb.
456	c.a.do.						
47	Coarsely mopaloid.......... (Chitonclloidea.)						
48	Very sagittate.					Distinct.	
480du.	0	5	0	$\}$ at sutures......	mido	Post.
49	Intermediat	1	5	1	Mod. long in front...	Minute.	

Table 1I.

This table enmuerates in brief the characters of the simus of the girdle and its armature, and the chief distinctive peculiarities of each group.

$\begin{aligned} & 80 \\ & 0 \\ & 0 \\ & 0 \\ & 4 \end{aligned}$	Sinus.	Girdle.	Peculiaritice.
7	Simple, smooth, deep	Gravellyscales, smoothorstriated	All uegativ
$7 \times$	Simple, broad	Spucules and chafty scales.	Flattened mucro, valves thrown formard
8	Simple, hroad, shallo	With liairs or fine spin	Lamine only ou anteriur valve.
9	broad, spongy	Solid, downy, poriferour	Terminal
$\begin{aligned} & 10 \\ & 11 \end{aligned}$	Ohsolute Broad.	Thin, horny, minely granu Granular diattish scales.	Short gilis, granular scales.
11a			Radsioid central slits.
12	Extremely small	Long, horwy scal	Small sinus, reticulate girdle, crowded propped terth.
12a	Most minnt	Sn	Smooth mird
13	Broad, shallo	Smooth or	Shont gills, isc
14	Broad, tissured	Smoeth	
15	Moderate	hin,	Teeth few, valves partiy immo rsed.
16	Broad or mi	Hairy	Rschnoid platrs, hairy irdle.
$16 a$	Broad, smoot	Short, striated, shelly bristl	Radsioid slits ischnoid plates, striated bristles.
17	Simple, broad, de	Spongy, downy	Halt' immersed ralves, plates ischnoid.
180		Irregular, chaffy	Boty long, chary seales.
183			Same as last, with radsioid
$18 c$	Simple, narrow, dee	Long, striated spines and scales..	Same, triple series of striated scales.
$18 d$	Simple, broad, shall	Double scries scales, not chaffy ..	Boty normal, donble series of scales.
18 c		all.	Rooly normal, small striate scales.
$18 f$			Body nommal. radsioid slits. ${ }_{\text {S }}$ Srales of Chiton, plates of Ischno-
18 g	$\left\{\begin{array}{c}\text { Broad, shallow, sowe- } \\ \text { times dratate, }\end{array}\right\}$	Large, smooth, imbricated scales.	$\left\{\begin{array}{l}\text { Brales of Chitom, plates of Ischno- }\end{array}\right.$ S Same, wit'1 radsioid slits.
19	Broad, shallow, laminate...	N	Narrow girdle, highly sculptured, plates curred ontward.
20	Narrow, deep, laminat	Smooth, with marginal	Curred plates, marginal pores.
21	Narrow, shallow, simple...	Minute bristles and sutural hair- tutts.	Propper teeth, shtural
	Rounded, simple	Fleshy with lung, hairy bristles.	Tongh. fleshy wirdle, propped teeth.
23	Narow, shallow, simple...	Smooth, with horny processes	l'ropped teeth, horns girdle processes.
24	13road, shallow, si	Spongy, with scattered soft hairs	Spongy girdle, single lateral slits.
25	Syuared, denticulate.	Large, solid, imbricate scales	Broad sermated teeth and sinus, sealy girdle.
250		do	Same, with added siote slits.
26		Smooth or dow	Sharper tecth, smooth cirdle.
$26 a$		Smooth, spreading	sharper teeth, vals, pardy cor-
27	Small, lam	Hai	Non-fissured lout deeply pectinate teeth, hairs girdle.
28		"Minutissime asperulus"	Posterior ralse "medio fimbriata."
29	Large, lamine united	Large, solid, grooved scale	Non-imbricatt- scales, broad grooved and serrato teeth.
30	Large, waved, lamine mited.	Shelly brist	Teeth short insille, long oatside, wared sinus.
30 a			Same, with radsioid
30 b	2large, waved, lobed, lam-\{	Shelly spi	Spinous girdle, lobe
30 c	inæ united.	Shelly bristles, spreading	Partly covered valves, radsioid slits.
31	Minute, wared, smooth	Smooth, smali, downy tuft	Downy girdle tufts, smooth sharp
32	Simple, laminx separated.		Bristly girdle, smooth propped teeth.
$32 a$		Bristly, striated scale	Sharp teeth, striate scales
33		Broad, with shelly bristl	Long, sharp teeth, radsioid slits, posterior mucro.
34	Narrow, smooth, laminate.	Thin, lanu	Twisted muero, smooth, thin girdle, thin ischnoid valves.
35	Narrow, laminæ separated	Thin, lanngate, wide, witlu sutural pores.	Smooth, porons girale partly covering valves, very long teeth.
36	Narro	Slit hehind, solid smooth scales..	Slit tail-plate, scaly girdle.
36a	Narrow, lobed	Produced in front, upright scales.	Sharp terth, produced giedle, bilobed seales, lohed simns.
37	w, very deep	Slit behind, minute spiculæ.	Yery long and narrow, deep sit.
38	Deep, lobed	Large, separate scales, bristles between.	Scaly girdle, flattened tail-plate.

Table II-Contimned.

With the above data and those comprised in my report on the Limpets and Chitons of Alaska, \&c., students should be pretty well able to refer any Chiton of whose characters they have made themselves masters to its proper place in the general classification.

Novenber 30, 1881.

[^0]: *Vol. i, pp. 281-344, 1878.
 \dagger Bull. Acad. Roy. des Sciences de Belgiture, 1857.

[^1]: * The figures are wrongly named C. Sluseanus on the plate.
 \dagger Koninck does not eseape this error also.

[^2]: * Doubt attaches to the mollnscan nature of these two minute species, which have some crustacean features.

